Fertigation management in Almeria

Rodney Thompson

University of Almeria

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 689687
• “It is very difficult to characterise farming in Almeria”
• “Every farmer is different”
• BUT, although there is variation…
• It is an agricultural system
• With its own characteristics and tendencies
• We will look at these characteristics and tendencies
• In the context of fertigation and irrigation
• Information to be presented is from surveys, practical manuals, discussions with technical advisors, researchers, regional estimations, etc.
Two major types of fertigation systems in Almeria-1

1) Simple fertigation tanks (“abonadoras”)

- Manual addition for every fertiliser application
- Manual operation, irrigation water diverted through tank
- Nutrients applied on a RATE BASIS (i.e. kg nutrient per hectare, m² or 1000 m²)
- Traditional agronomic approach (based on Rates)
- Amounts added can be based on crop nutrient uptake curves, soil tests
Two major types of fertigation systems in Almeria-2

2) Multiple tanks with controller (computer operated)
 – 2–5 tanks of concentrated fertiliser solutions (commonly 100x the concentration applied), plus additional tank for acid
 – 1–2 fertilisers per tank
 – Tanks prepared every so many days; commonly once a week
 – Controller automatically applies programmed irrigation with nutrient solution
 – Approx. 50% of soil-grown crops have, and proportion is constantly increasing
 – Nutrients applied on a CONCENTRATION BASIS basis (i.e. mmol/L)
 – Nutrient management similar to substrate-grown crops
 – Growers do not know the total amounts of nutrients applied
Two major types of fertigation systems in Almeria-2

2) Multiple tanks with controller (computer operated)
 – 2–5 tanks of concentrated fertiliser solutions (commonly 100x the concentration applied), plus additional tank for acid
 – 1–2 fertilisers per tank

WHEN APPLYING CONCENTRATIONS

• Difficult to adjust the applied concentrations to results of soil tests
• Difficult to consider nutrient uptake curves
• Difficult to use accepted agronomic procedures to optimise nutrient efficiency
• **Optimising fertiliser use with these systems is a CHALLENGE**

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 689687
Issue of fertilising crops with multi-tank system to meet limits

- All of greenhouse areas in Almeria are Nitrate Vulnerable Zones (NVZs)
- Therefore, there are limits on MAXIMUM amount of N applied to a single crop

The maximum limits on N fertiliser application for greenhouse grown crops in Andalucía in NVZs

<table>
<thead>
<tr>
<th>Species</th>
<th>Maximum allowed amount fertiliser N per tonne of yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato</td>
<td>6 kg N per tonne of fruit</td>
</tr>
<tr>
<td>Pimiento, melon</td>
<td>5 kg N per tonne of fruit</td>
</tr>
<tr>
<td>Cucumber, watermelon</td>
<td>4 kg N per tonne of fruit</td>
</tr>
<tr>
<td>Zucchini, Eggplant</td>
<td>7 kg N per tonne of fruit</td>
</tr>
</tbody>
</table>

Source: BOJA Number 111 Orden 1 de junio 2016
Despite challenges of optimising fertiliser application; these system have great potential

Soil mineral N from (a) traditional open field and (b) combined fertigation drip irrigation

<table>
<thead>
<tr>
<th>System</th>
<th>N application</th>
<th>Philosophy of managing N supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional open field</td>
<td>Pre-plant; 1-2 side-dress</td>
<td>Ensuring N not limiting during crop; generally, 1-3 large applications</td>
</tr>
<tr>
<td>Fertigation + drip</td>
<td>Frequent, by drip irrigation & fertigation</td>
<td>“Spoon feeding”; providing N very frequently as required, in small amounts, to immediate root zone</td>
</tr>
</tbody>
</table>
Traditional management criteria in Almería

IRRIGATION AND FERTILISATION

• Generally, based on fixed schedules and standard recipes
• Generally, based on “collective experience”
• Farmers know “what works” and consistently gives profitable production
• With variations between farmers
Traditional management criteria in Almería

IRRIGATION

• Generally based on fixed schedules,
• For example,
 – 30 minutes every three time a week, then
 – 20 minutes every day
• The schedules are flexible
 – Adjustments made in response to weather conditions, crop growth.....
• Approx. 10–15% use manual tensiometers
 – Almeria is largest single market for Irrometer tensiometers in Spain

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 689687
Traditional management criteria in Almería

FERTILISER APPLICATION – Simple Fertiliser Tanks

• Generally based on standard fertiliser plan (fixed schedule)
• Example in next slide
• Adjustments made to the program depending on crop appearance, weather etc.
 • The amount of N applied is reduced when the crop has too much vegetative growth
 • More K may be applied to promote fruit growth
 • These observations also apply to multi tank systems
Example of standard fertilizer plan for NUTRIENT RATES for TOMATO adjusted for growth and phenological phases (Almeria)

- **First week after transplanting**
 No fertilizer

- **Second week after planting**
 \(\text{NH}_4\text{H}_2\text{PO}_4 \) 0.5 kg 1000 m\(^{-2}\)

- **Third and fourth weeks**
<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{KNO}_3)</td>
<td>0.5 kg 1000 m(^{-2})</td>
</tr>
<tr>
<td>(\text{NH}_4\text{H}_2\text{PO}_4)</td>
<td>1.0 kg 1000 m(^{-2})</td>
</tr>
</tbody>
</table>

- **From week 4 to fruit set of second truss** (blue and red in alternate irrigations)
<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_4\text{H}_2\text{PO}_4)</td>
<td>1.0 kg 1000 m(^{-2})</td>
</tr>
<tr>
<td>(\text{KNO}_3)</td>
<td>0.5 kg 1000 m(^{-2})</td>
</tr>
<tr>
<td>(\text{NH}_4\text{NO}_3)</td>
<td>0.5 kg 1000 m(^{-2})</td>
</tr>
<tr>
<td>(\text{HNO}_3)</td>
<td>0.2 L 1000 m(^{-2})</td>
</tr>
<tr>
<td>(\text{Ca(NO}_3\text{)}_2)</td>
<td>1.0 kg 1000 m(^{-2})</td>
</tr>
</tbody>
</table>

- **From second truss to fourth truss** (same 5 fertilisers in alternate irrigations, but generally larger amounts)

- **From fourth truss to seventh truss** (same 5 fertilisers in alternate irrigations, but more)

-

Traditional management criteria in Almeria

FERTILISER APPLICATION – Multiple tanks with programmer

- Based on recipes of fixed concentrations of all nutrients
 - Concentrations may be constant during crop
 - Concentrations may vary with phenological development

- As with simple fertiliser tanks, adjustments made in relation to crop appearance, climate etc.
Examples of standard nutrient solution CONCENTRATIONS for different species of vegetable crops in Almeria

- One standard solution used for the entire crop
- Different standard solution for different species

<table>
<thead>
<tr>
<th>Species</th>
<th>NO₃⁻ (mM)</th>
<th>H₂PO₄⁻ (mM)</th>
<th>SO₄²⁻ (mM)</th>
<th>K⁺ (mM)</th>
<th>Ca²⁺ (mM)</th>
<th>Mg²⁺ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato</td>
<td>11</td>
<td>1.5</td>
<td>1.5</td>
<td>7.5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cucumber</td>
<td>13</td>
<td>1.5</td>
<td>1.7</td>
<td>6</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Sweet pepper</td>
<td>12</td>
<td>1.5</td>
<td>1.5</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Watermelon</td>
<td>11</td>
<td>1.5</td>
<td>2</td>
<td>7.5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

For tomato

<table>
<thead>
<tr>
<th>Crop phase</th>
<th>NO$_3^-$ (mM)</th>
<th>H$_2$PO$_4^-$ (mM)</th>
<th>SO$_4^{2-}$ (mM)</th>
<th>K$^+$ (mM)</th>
<th>Ca$^{2+}$ (mM)</th>
<th>Mg$^{2+}$ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Until flowering of second truss</td>
<td>8</td>
<td>2.5</td>
<td>2.5</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Second to fifth truss</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>7.5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Fifth to tenth truss</td>
<td>14</td>
<td>1.5</td>
<td>2</td>
<td>8.5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Last truss until end crop</td>
<td>14</td>
<td>1.5</td>
<td>1.5</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Substrate-grown crops

- Approx. 10% of total area
- Nearly all substrate-grown crops are free-draining
- Generally, irrigation automatically controlled with a demand tray system
- Salinity a very important consideration
- Drainage fractions vary between 15–40%
- Drainage collected from one or several bags of substrate, and electrical conductivity (EC) measured manually with portable EC meter

Demand tray system for auto control of irrigation

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 689687
Variations in the standard fertiliser programs – soil-grown crops

“…..si observamos las distintas recetas que expiden los técnicos del camp podemos comprobar que son MUY VARIADAS y CONTRADICTORIOS…..”

“Lo cierto es que existe una banda muy amplia donde puede oscilar un abonado sin que aprecie diferencias alguna entre ambos y por ello nos encontramos distintos abonados en la misma zona con el mismo suelo y la misma especie siendo validos todos…”

- The recipes used vary appreciably, and can be contradictory
- Wide range of fertiliser practices in the same zone on same soil and for same crop
- Production very similar despite these differences

- This suggests that the nutrient supply is generally not limiting production
- Why is the nutrient supply not limiting crop production?
- What are the consequences?
 - Of variable nutrient applications when nutrients not limiting
Use of manure in Almeria greenhouses

- Traditionally, large manure application (200–500 m³ ha⁻¹) at greenhouse construction
 - >1,000 kg N ha⁻¹
- Traditionally, additional manure every 2–5 years ("retranqueo"); now less common
 - In bands ("carillas"), applying >several hundred kg N ha⁻¹
- Now, commonly organic matter "products" added through fertigation

- Limit on manure N applied in Nitrate Vulnerable Zones (NVZs)
 - = 170 kg N ha⁻¹ year⁻¹
- All of greenhouse areas in Almeria are NVZs
Consequences of traditional nutrient and irrigation management in Almeria

IMPORTANT CONSIDERATIONS

• fertilisers & water are approx. 10% of variable costs
• Not major costs; also, not “life or death” issues
• greenhouses are very densely concentrated

WHAT ARE THE CONSEQUENCES

• an economically very successful system ("The Almeria miracle")
• in greenhouse soils, an accumulation of available P and exchangeable K
• variable and somewhat excessive irrigation
• aquifer depletion
• excess N supply (manure contribution important)
 – On average, total N supply (fertilisers + N from manure) is more 2x crop N uptake
• nitrate contamination of aquifers
Transition to more sustainable management practices (in soil)

IRRIGATION

1) Tools to calculate crop water requirements (Cajamar)

- Easy to use tables
- User-friendly simple decision support program (“sistema de ayuda a tomar decisiones”)
Transition to more sustainable management practices (in soil)

IRRIGATION

1) Tools to calculate crop water requirements (Cajamar)
 - Easy to use tables
 - User-friendly simple decision support program ("sistema de ayuda a tomar decisiones")

2) Use of soil moisture sensors to assist with irrigation (Cajamar, UAL, IFAPA)
 - Evaluated different sensors; tensiometers considered most appropriate
 - Developed limits for when to irrigate
 - Evaluation of different limits with electric tensiometers
 - Development of systems for automatic irrigation with electric tensiometers
Transition to more sustainable management practices (in soil)

NITROGEN MANAGEMENT

1) Tools to calculate crop N requirements (UAL)
 - **VegSyst-DSS**: works in MS Windows, in English and Spanish
 - Simulates crop N uptake for specific crop conditions (dates of crop)
 - Considers individual greenhouse conditions e.g. dates & amount of whitewash ("blanqueo")
 - Considers mineral N in soil at planting, and N mineralised from manure
 - Calculates N required per day as kg N ha$^{-1}$ or as mmol L$^{-1}$, plus mm of irrigation
 - Uses agronomic management approaches to calculate the required N concentration
Transition to more sustainable management practices (in soil)

NITROGEN MANAGEMENT

1) Tools to calculate crop N requirements (UAL)
 - VegSyst-DSS; works in MS Windows, in English and Spanish
 - Simulates crop N uptake for specific crop conditions (dates of crop)
 - Considers individual greenhouse conditions e.g. dates & amount of whitewash ("blanqueo")
 - Considers mineral N in soil at planting, and N mineralised from manure
 - Calculates N required per day as kg N ha\(^{-1}\) or as mmol L\(^{-1}\), plus mm of irrigation
 - Uses agronomic management approaches to calculate the required N concentration

Tomato-1: No soil min N or manure; Tomato-2: 200 kg soil mineral N ha\(^{-1}\); REF: farmer practice.
Transition to more sustainable management practices (in soil)

NITROGEN MANAGEMENT

2) Tools/Methods to monitor and evaluate crop N status (UAL)

- Nitrate concentration in soil solution
- Nitrate concentration in petiole sap
- Both can be measured with on-farm rapid analysis systems (e.g. LAQUAtwin)
- Use of proximal optical sensors (e.g. canopy reflectance...)

FERTINNOWA
Combined use of improved irrigation and N management practices – FERTINNOWA showcase trial (Cajamar, UAL)

IMPROVED IRRIGATION MANAGEMENT
• Automatic irrigation with electric tensiometers

IMPROVED N MANAGEMENT
• VegSyst-DSS calculate N fertiliser concentration (4 week intervals)
• Nitrate concentration in soil solution and in petiole sap
• Both analysed on farm with rapid analysis system

RESULTS
• In pepper and tomato, production same as with farmer management

Pepper
• Irrigation reduced by 15%, drainage reduced by 49%
• Fertiliser N applied reduced by 38%, nitrate leached reduced by 63%

Tomato
• Irrigation reduced by 42%,
• Fertiliser N applied reduced by 52%
Thank you for your attention